3.512 \(\int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x)+C \cos ^2(c+d x))}{(a+a \cos (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=202 \[ \frac {(A-5 B+9 C) \tan ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {(2 B-3 C) \sin ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{a^{3/2} d}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}+\frac {(A-B+3 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{2 a d \sqrt {a \cos (c+d x)+a}} \]

[Out]

(2*B-3*C)*arcsin(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/a^(3/2)/d-1/2*(A-B+C)*cos(d*x+c)^(3/2)*sin(d*x+c)/
d/(a+a*cos(d*x+c))^(3/2)+1/4*(A-5*B+9*C)*arctan(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c
))^(1/2))/a^(3/2)/d*2^(1/2)+1/2*(A-B+3*C)*sin(d*x+c)*cos(d*x+c)^(1/2)/a/d/(a+a*cos(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.63, antiderivative size = 202, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.156, Rules used = {3041, 2983, 2982, 2782, 205, 2774, 216} \[ \frac {(A-5 B+9 C) \tan ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {(2 B-3 C) \sin ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{a^{3/2} d}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}+\frac {(A-B+3 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{2 a d \sqrt {a \cos (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[Cos[c + d*x]]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/(a + a*Cos[c + d*x])^(3/2),x]

[Out]

((2*B - 3*C)*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(a^(3/2)*d) + ((A - 5*B + 9*C)*ArcTan[(S
qrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) - ((A - B +
 C)*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(2*d*(a + a*Cos[c + d*x])^(3/2)) + ((A - B + 3*C)*Sqrt[Cos[c + d*x]]*Sin[
c + d*x])/(2*a*d*Sqrt[a + a*Cos[c + d*x]])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 2774

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rule 2782

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[(-2*a)/f, Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, (b*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c
+ d*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 2982

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin
[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A*b - a*B)/b, Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*
x]]), x], x] + Dist[B/b, Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] /; FreeQ[{a, b, c, d, e
, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2983

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(B*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n)/(f*(
m + n + 1)), x] + Dist[1/(b*(m + n + 1)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n - 1)*Simp[A*b*c*(
m + n + 1) + B*(a*c*m + b*d*n) + (A*b*d*(m + n + 1) + B*(a*d*m + b*c*n))*Sin[e + f*x], x], x], x] /; FreeQ[{a,
 b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 0] && (I
ntegerQ[n] || EqQ[m + 1/2, 0])

Rule 3041

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[((a*A - b*B + a*C)*Cos[e + f*x]*(
a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(f*(b*c - a*d)*(2*m + 1)), x] + Dist[1/(b*(b*c - a*d)*(2*m
 + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) + B*(
b*c*m + a*d*(n + 1)) - C*(a*c*m + b*d*(n + 1)) + (d*(a*A - b*B)*(m + n + 2) + C*(b*c*(2*m + 1) - a*d*(m - n -
1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^
2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)]

Rubi steps

\begin {align*} \int \frac {\sqrt {\cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^{3/2}} \, dx &=-\frac {(A-B+C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac {\int \frac {\sqrt {\cos (c+d x)} \left (\frac {1}{2} a (A+3 B-3 C)+a (A-B+3 C) \cos (c+d x)\right )}{\sqrt {a+a \cos (c+d x)}} \, dx}{2 a^2}\\ &=-\frac {(A-B+C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac {(A-B+3 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{2 a d \sqrt {a+a \cos (c+d x)}}+\frac {\int \frac {\frac {1}{2} a^2 (A-B+3 C)+a^2 (2 B-3 C) \cos (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx}{2 a^3}\\ &=-\frac {(A-B+C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac {(A-B+3 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{2 a d \sqrt {a+a \cos (c+d x)}}+\frac {(2 B-3 C) \int \frac {\sqrt {a+a \cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx}{2 a^2}+\frac {(A-5 B+9 C) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx}{4 a}\\ &=-\frac {(A-B+C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac {(A-B+3 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{2 a d \sqrt {a+a \cos (c+d x)}}-\frac {(2 B-3 C) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^2}{a}}} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{a^2 d}-\frac {(A-5 B+9 C) \operatorname {Subst}\left (\int \frac {1}{2 a^2+a x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{2 d}\\ &=\frac {(2 B-3 C) \sin ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{a^{3/2} d}+\frac {(A-5 B+9 C) \tan ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A-B+C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac {(A-B+3 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{2 a d \sqrt {a+a \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 2.49, size = 413, normalized size = 2.04 \[ \frac {\cos ^3\left (\frac {1}{2} (c+d x)\right ) \left (\frac {2 \sqrt {\cos (c+d x)} \tan \left (\frac {1}{2} (c+d x)\right ) \sec \left (\frac {1}{2} (c+d x)\right ) (A-B+2 C \cos (c+d x)+3 C)}{d}+\frac {\sqrt {2} e^{\frac {1}{2} i (c+d x)} \sqrt {e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}\right )} \left (-i \sqrt {2} (A-5 B+9 C) \log \left (1+e^{i (c+d x)}\right )+i \sqrt {2} A \log \left (\sqrt {2} \sqrt {1+e^{2 i (c+d x)}}-e^{i (c+d x)}+1\right )-2 i (2 B-3 C) \sinh ^{-1}\left (e^{i (c+d x)}\right )+4 i B \log \left (1+\sqrt {1+e^{2 i (c+d x)}}\right )-5 i \sqrt {2} B \log \left (\sqrt {2} \sqrt {1+e^{2 i (c+d x)}}-e^{i (c+d x)}+1\right )+4 B d x-6 i C \log \left (1+\sqrt {1+e^{2 i (c+d x)}}\right )+9 i \sqrt {2} C \log \left (\sqrt {2} \sqrt {1+e^{2 i (c+d x)}}-e^{i (c+d x)}+1\right )-6 C d x\right )}{d \sqrt {1+e^{2 i (c+d x)}}}\right )}{2 (a (\cos (c+d x)+1))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[Cos[c + d*x]]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/(a + a*Cos[c + d*x])^(3/2),x]

[Out]

(Cos[(c + d*x)/2]^3*((Sqrt[2]*E^((I/2)*(c + d*x))*Sqrt[(1 + E^((2*I)*(c + d*x)))/E^(I*(c + d*x))]*(4*B*d*x - 6
*C*d*x - (2*I)*(2*B - 3*C)*ArcSinh[E^(I*(c + d*x))] - I*Sqrt[2]*(A - 5*B + 9*C)*Log[1 + E^(I*(c + d*x))] + (4*
I)*B*Log[1 + Sqrt[1 + E^((2*I)*(c + d*x))]] - (6*I)*C*Log[1 + Sqrt[1 + E^((2*I)*(c + d*x))]] + I*Sqrt[2]*A*Log
[1 - E^(I*(c + d*x)) + Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))]] - (5*I)*Sqrt[2]*B*Log[1 - E^(I*(c + d*x)) + Sqrt
[2]*Sqrt[1 + E^((2*I)*(c + d*x))]] + (9*I)*Sqrt[2]*C*Log[1 - E^(I*(c + d*x)) + Sqrt[2]*Sqrt[1 + E^((2*I)*(c +
d*x))]]))/(d*Sqrt[1 + E^((2*I)*(c + d*x))]) + (2*Sqrt[Cos[c + d*x]]*(A - B + 3*C + 2*C*Cos[c + d*x])*Sec[(c +
d*x)/2]*Tan[(c + d*x)/2])/d))/(2*(a*(1 + Cos[c + d*x]))^(3/2))

________________________________________________________________________________________

fricas [A]  time = 37.98, size = 241, normalized size = 1.19 \[ -\frac {\sqrt {2} {\left ({\left (A - 5 \, B + 9 \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (A - 5 \, B + 9 \, C\right )} \cos \left (d x + c\right ) + A - 5 \, B + 9 \, C\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right ) - 2 \, {\left (2 \, C \cos \left (d x + c\right ) + A - B + 3 \, C\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 4 \, {\left ({\left (2 \, B - 3 \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (2 \, B - 3 \, C\right )} \cos \left (d x + c\right ) + 2 \, B - 3 \, C\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right )}{4 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-1/4*(sqrt(2)*((A - 5*B + 9*C)*cos(d*x + c)^2 + 2*(A - 5*B + 9*C)*cos(d*x + c) + A - 5*B + 9*C)*sqrt(a)*arctan
(sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))) - 2*(2*C*cos(d*x + c) + A - B + 3
*C)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + c) + 4*((2*B - 3*C)*cos(d*x + c)^2 + 2*(2*B - 3*C)*c
os(d*x + c) + 2*B - 3*C)*sqrt(a)*arctan(sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))))/(
a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sqrt(cos(d*x + c))/(a*cos(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

maple [B]  time = 0.50, size = 542, normalized size = 2.68 \[ \frac {\left (\sqrt {\cos }\left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (-1+\cos \left (d x +c \right )\right )^{3} \left (2 A \left (\cos ^{3}\left (d x +c \right )\right ) \left (\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {5}{2}}+2 A \left (\cos ^{2}\left (d x +c \right )\right ) \left (\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {5}{2}}-2 A \cos \left (d x +c \right ) \left (\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {5}{2}}-2 B \left (\cos ^{3}\left (d x +c \right )\right ) \left (\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}}+A \arcsin \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right ) \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right ) \sqrt {2}-2 A \left (\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {5}{2}}-5 B \sin \left (d x +c \right ) \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {2}\, \arcsin \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right )+9 C \arcsin \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right ) \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right ) \sqrt {2}+4 C \left (\cos ^{4}\left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}-8 B \sin \left (d x +c \right ) \left (\cos ^{2}\left (d x +c \right )\right ) \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}{\cos \left (d x +c \right )}\right )+2 B \cos \left (d x +c \right ) \left (\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}}+12 C \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right ) \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}{\cos \left (d x +c \right )}\right )+2 C \left (\cos ^{3}\left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}-6 C \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )}{4 d \,a^{2} \left (\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {5}{2}} \sin \left (d x +c \right )^{7}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(3/2),x)

[Out]

1/4/d*cos(d*x+c)^(1/2)*(a*(1+cos(d*x+c)))^(1/2)*(-1+cos(d*x+c))^3*(2*A*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c))
)^(5/2)+2*A*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(5/2)-2*A*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(5/2)-2*
B*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)+A*arcsin((-1+cos(d*x+c))/sin(d*x+c))*cos(d*x+c)^2*sin(d*x+c)*
2^(1/2)-2*A*(cos(d*x+c)/(1+cos(d*x+c)))^(5/2)-5*B*sin(d*x+c)*cos(d*x+c)^2*2^(1/2)*arcsin((-1+cos(d*x+c))/sin(d
*x+c))+9*C*arcsin((-1+cos(d*x+c))/sin(d*x+c))*cos(d*x+c)^2*sin(d*x+c)*2^(1/2)+4*C*cos(d*x+c)^4*(cos(d*x+c)/(1+
cos(d*x+c)))^(1/2)-8*B*sin(d*x+c)*cos(d*x+c)^2*arctan(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c))
+2*B*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)+12*C*cos(d*x+c)^2*sin(d*x+c)*arctan(sin(d*x+c)*(cos(d*x+c)/(
1+cos(d*x+c)))^(1/2)/cos(d*x+c))+2*C*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)-6*C*cos(d*x+c)^2*(cos(d*x+
c)/(1+cos(d*x+c)))^(1/2))/a^2/(cos(d*x+c)/(1+cos(d*x+c)))^(5/2)/sin(d*x+c)^7

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sqrt(cos(d*x + c))/(a*cos(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\sqrt {\cos \left (c+d\,x\right )}\,\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A\right )}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)^(1/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/(a + a*cos(c + d*x))^(3/2),x)

[Out]

int((cos(c + d*x)^(1/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/(a + a*cos(c + d*x))^(3/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)/(a+a*cos(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________